🎵 DeepMusic-OCR: How AI Learns to Read Sheet Music
We adapted DeepSeek-OCR a model built for reading text and taught it to read the 2D language of music notation.
Here’s what the paper is really about 👇
Thread 🧵
1/
Unlike normal text, music is two-dimensional:
• Vertical = chords / simultaneity
• Horizontal = rhythm / time
Traditional OMR systems try to segment symbols.
DeepMusic-OCR doesn’t.
It reads the entire score at once.
2/
🔍 The Encoder
DeepMusic-OCR uses a vision encoder redesigned for music:
• 8×8 fine-patch resolution for tiny details
• 2D positional encoding aligned with staff lines
• Dual attention: local (notes) + global (layout)
• Pretrained on millions of synthetic sheets
This lets the model capture both symbols and structure.
3/
🎼 The Decoder
Instead of outputting words, the decoder outputs musical events, like:
<note:F#5-quarter>
<clef:G>
<key:D-major>
It also handles:
• Polyphony
• Chords
• Multiple voices
…thanks to a Mixture-of-Experts architecture.
4/
🧠 Musical Grammar Built In
DeepMusic-OCR isn’t allowed to output impossible music.
A “musical grammar loss” penalizes:
• Broken measures
• Impossible rhythms
• Invalid symbols
This gives the model a sense of musical correctness.
5/
🖼️ Training Data
Since real OMR data is limited, we generated millions of training examples from:
• MusicXML
• MuseScore
• IMSLP
Each score is rendered in multiple engraving styles, with distortions to simulate scanned pages.
Synthetic data = the breakthrough.
6/
⚡ Results
With ~200 tokens per page, DeepMusic-OCR achieves:
• High symbol accuracy
• Consistent measures
• Strong transfer to handwritten music
And it does so at a fraction of the compute cost of traditional OMR systems.
7/
🌍 Why This Matters
DeepMusic-OCR enables:
• Digitization of classical archives
• Large-scale symbolic music analysis
• Conditioning generative models with real scores
• Education tools for musicians
This isn’t just OCR it’s visual-symbolic music understanding.
1,44 тыс.
5
Содержание этой страницы предоставляется третьими сторонами. OKX не является автором цитируемых статей и не имеет на них авторских прав, если не указано иное. Материалы предоставляются исключительно в информационных целях и не отражают мнения OKX. Материалы не являются инвестиционным советом и призывом к покупке или продаже цифровых активов. Раздел использует ИИ для создания обзоров и кратких содержаний предоставленных материалов. Обратите внимание, что информация, сгенерированная ИИ, может быть неточной и непоследовательной. Для получения полной информации изучите соответствующую оригинальную статью. OKX не несет ответственности за материалы, содержащиеся на сторонних сайтах. Цифровые активы, в том числе стейблкоины и NFT, подвержены высокому риску, а их стоимость может сильно колебаться. Перед торговлей и покупкой цифровых активов оцените ваше финансовое состояние и принимайте только взвешенные решения.

